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The distortion by large-scale random motions of small-scale turbulence is 
investigated by examining a model problem. The changes in energy spectra, velocity 
and vorticity moments, and anisotropy of small-scale turbulence are calculated over 
timescales short compared with the timescale of small-scale turbulence by applying 
rapid distortion theory with a random distortion matrix for different initial 
conditions : irrotational or rotational, and isotropic or anisotropic large-scale 
turbulence with or without mean strain, and isotropic or anisotropic small-scale 
turbulence. 

We have obtained the following results : (1) Irrotational random strains broaden 
the small-scale energy spectrum and transfer energy to higher wavenumbers. (2) The 
rotational part of the large-scale strain is important for reducing anisotropy of 
turbulence rather than transferring energy to higher wavenumbers. (3) Anisotropy in 
small-scale turbulence is reduced by large-scale isotropic turbulence. The reduction 
of anisotropy of the velocity field depends on the initial value of the velocity 
anisotropy tensor of the small-scale velocity field ua defined by mlm-&Yii, and 
also on the anisotropy of the distribution of the energy spectrum in wavenumber 
space. The reduction in anisotropy of the vorticity field wi depends only on the 
vorticity anisotropy tensor. (4) The pressure-strain correlation is calculated for the 
change in Reynolds stress of the anisotropic small-scale turbulence. The correlation 
is proportional to time and depends on the difference between the velocity and 
wavenumber anisotropy tensors. These results (which are exact for small time) differ 
significantly from current turbulence models. ( 5 )  The effect of large-scale anisotropic 
turbulence on isotropic small-scale turbulence is calculated in general. Results are 
given for the case of axisymmetric large scales and are compared with the observed 
behaviour of small-scale turbulence near interfaces. (6) When a mean irrotational 
straining motion is applied to turbulence with distinct large-scale and small-scale 
components in their velocity field, the large-scale irrotational motions combine with 
the mean straining to increase further the anisotropy of the vorticity of the small 
scales, but the large-scale rotational motions reduce the small-scale anisotropy. For 
isotropic straining motion, the latter is weaker than the former. After the mean 
distortion ceases, both kinds of large-scale straining tend to reduce the anisotropy. 
This also has implications for modelling the rate of reduction of anisotropy. 

1. Introduction 
An essential feature of turbulence is the interaction between motions at  different 

scales. This interaction gives rise to the transfer of energy, which is usually (but not 
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FIGURE 1 (a,  6). For caption see facing page. 

always) from large to small scales in three-dimensional turbulence, or from small to 
large scales in two-dimensional turbulence. It also affects the tendency towards 
isotropy of turbulence (though how it does so is not understood), and determines the 
manner of the response of the turbulence to gradients in the mean flow or changes 
in the boundary conditions, both when the response is rapid as in wind-tunnel 
contractions or slow as in shear flows. These processes are incorporated more or less 
implicitly in approximate models of turbulence ranging from theories modelling the 
full two-point spectra such as Edwards (1964), Kraichnan (1959) and EDQNM (e.g. 
Lesieur 1987), to Reynolds stress closures such as those of Lumley (1978), Launder, 
Reece & Rodi (1975) and Cambon, Jeandel & Mathieu (1981). In  Edwards' model 
there is an explicit hypothesis of the relaxation time 7(k) for each part of wave- 
number space, corresponding to these interactions. 

There seems to be two ways of examining these interactions explicitly: either to 
devise experiments, such as those of Kellogg & Corrsin (1980), Itsweire & Van Atta 
(1984) and Tan-atichat, Nagib & Loehrke (1982) ; or to perform computations using 
the full equations of motion on flows where turbulence is generated a t  two distinct 
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FIQURE 1. Aspects of the study of the interaction of large- and small-scale turbulence. (a) 
Turbulence generated by a large grid interacting with small-scale turbulence generated by a small 
grid. Note how the small eddies are distorted by the large eddies - that is what we calculate. (b) 
The energy spectra of large- and small-scale turbulent velocity fields with a distinct scale 
separation between them - these spectra might be based on the whole record at a point or based 
on a conditionally sampled record such as within a coherent structure. ( c )  The transfer of energy 
between scales less and greater than k;l in a continuous spectrum (---) is often analysed by 
assuming that the spectrum for k < k,, (--) can be regarded as separated from the spectrum 
k > k, (---). This diagram indicates the idealization. 

scales; for example, large-scale turbulence produced by a grid in a wind tunnel might 
pass through another grid with a different scale (figure lu ) .  The results of these or 
similar experiments cannot in general be compared quantitatively with the general 
theories of turbulence, or even explained in qualitative terms. For example, the 
second grid may produce broad- or narrow-band velocity fluctuations or merely a 
non-uniform perturbation on the mean flow ; depending on which of these processes 
is dominant, the interaction with the initial turbulence differs considerably, and 
different kinds of theory are appropriate. It is certainly not possible to use such 
experiments to understand the general problem of interaction of small and large 
scales in turbulence without the development of some theory closely related to these 
actual experiments or computations. 

Another way to  examine these interactions explicitly is to  analyse or compute an 
idealized form of these experiments by considering how a small-scale homogeneous 
turbulent velocity field u(x ,  t )  interacts with a primary large-scale random velocity 
field V(x,  t ) .  In  some cases this interaction may take place in the presence of a mean 
velocity field u(x, t ) .  This idealization is used in the EDQNM model (Bertoglio 1986) 
and in Townsend’s (1976, p. 99) estimate of transfer to  small scales (figure 1b,c). 
For cases where the small-scale turbulence is more energetic than the large-scale 
turbulence, Pouquet, Frisch & Chollet (1983) have shown that the small scale acts 
like an eddy viscosity on the large scale, cutting off its high-wavenumber spectrum, 
while the large scale does not affect the small scales much. 

In  this paper we concentrate on the situation where the small-scale turbulence is 
less energetic than the large scale. With suitable generalizations the techniques of 
rapid distortion theory (r.d.t.) can be applied to  predict this interaction over a short 
time t,, provided that (a)  the scale of the large-scale turbulence L is much greater 
than that of the small-scale turbulence 1, i.e. 

L P 1, (1.1) 
14-2 
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and (b )  the rate of straining of the vorticity of the small-scale turbulence by the large- 
scale turbulence U'IL is much greater than the self-induced straining rate of the 
small-scale turbulence by itself, d / l .  Here L and I are the lengthscales and U', u' the 
r.m.s. velocity scales of the large- and small-scale turbulence, i.e. 

U' u' 
-%-.  
L l  

Even if these two timescales are of the same order, it  is found by computations (e.g. 
Bertoglio 1986) and experiments that the theory can still approximately describe the 
distortion because the small-scale distortion is randomly distributed over a period 
of the distortion and therefore has less net effect than the large scale. In most 
laboratory turbulent flows at  moderate Reynolds number, it is found that the 
timescales (llu') of the small scales are comparable with the timescales of the large 
scales L/U'. At the Reynolds number characteristic of most numerical simulations, 
even condition (1.2) is satisfied (Hunt, Wray & Buell 1988). 

The methods of r.d.t. have been developed to calculate the change of the small 
scale caused by a uniform large-scale straining motion U = a - x ,  over a time interval 
t, < l / d .  For each such straining the small-scale turbulence can be averaged 
spatially over many of its lengthscales 1. Then to  calculate the interaction of the 
small-scale turbulence and large-scale turbulence, we simply average over an 
ensemble of values of a. 

Examples of straining in different situations are illustrated in figure 2 (a). 
Our analysis is directed towards helping answer some of the following specific 

questions about the interaction of large and small scales that have been raised, not 
only in the context of the wind-tunnel experiments referred to earlier, but also in the 
context of wave-turbulence interaction (Finnigan & Einaudi 1981 ; Carruthers & 
Hunt 1988) and distortion of turbulence by rigid surfaces (Hunt 1984). 

( 1 )  How does the transfer of energy between small and large scales depend on the 
relative energies, scales, isotropy and rotationality of the motions Z How accurate is 
Townsend's (1976, p. 99) estimate for the transfer of energy in the inertial subrange, 
based on an assumption of irrotational straining by the large scales and that the large 
lengthscales are only slightly larger than the small lengthscales? (See also Kerr 
1985.) 

(2) How do interactions between large- and small-scale turbulence affect the 
tendency to isotropy or anisotropy of turbulence Z For example, if the small-scale 
turbulence is anisotropic, how rapidly does large-scale turbulence make it isotropic 
(cf. Kellogg & Corrsin 1980), or vice versa (Hunt 1984)? 

(3) In  turbulent flows undergoing distortion by a mean straining motion, how does 
this affect the interaction between large and small scales ? Or as the vortex lines are 
stretched by the mean motion, how are they distorted by the turbulence itself (figure 
2b)? After elongation and compression by the mean straining, a small amount of 
additional random distortion may have a large effect on the vorticity component in 
the direction in which the mean flow compresses vortex elements (Hunt 1973, p. 661). 
(In other words, the distortion matrix is randomly rotated and stretched.) This 
nonlinear effect is the reason why r.d.t. over-predicts the reduction in the variance 
of one component of turbulence caused by irrotational distortion and is a better 
approximation for the components that  are amplified. We can explore this question 
by considering the effects of a mean distortion of a turbulent flow consisting of large- 
and small-scale components, and help to elucidate the limits of r.d.t. 

The analysis presented here is a rational calculation, in that the approximations 
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(a)(iii) 
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FIGURE 2. Sketches to illustrate vorticity dynamics. (a) (i), (ii) Vortex tubes and sheets on a scale 
of the Kolmogorov length surrounded by straining motions - these are narrow regions of high 
dissipation and high intermittent vorticity, and (iii) a region on much larger scale, L, where the 
vorticity is distributed and dissipation is weak - such as in parts of coherent structures. Regions 
of vorticity are indicated by //// and the direction by 4. (See Kerr 1985.) (b) Vortex elements 
of small-scale turbulence distorted in the period 0 to t by mean straining - and by large eddies 
+ and -. The mean strain leads AB to change to A’B’; with the large eddies it changes to 
A”B” or A ” ’ B .  Kote how that leads to a component of vorticity in the direction C’D’ - an example 
of how rotational strain by large eddies reduces the anisotropy caused by the mean straining. 
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and the range of applicability can be clearly stated. For the general turbulence 
models mentioned earlier, the approximation and the range of validity are not well 
defined. Rapid distortion theory has been found to  be a useful limiting case against 
which to test second-order closure theories where the turbulence undergoes mean 
distortion, or in regions close to  surfaces; see for example Launder et al. (1975), 
Jeandel, Brison & Mathieu (1978) or Bertoglio (1986). But these comparisons have 
been restricted to the linear terms and have not in fact tested the closure 
approximation of representing third-order moments in terms of second-order 
moments. 

The analysis presented here can be used to explore this key element in modelling 
turbulence and develop alternative models. 

There is much similarity between this analysis of the dynamical interaction of 
large- and small-scale turbulent velocity fields and the interaction of large- and 
small-scale passive scalar fields, such as temperature, or passive vector fields, such as 
magnetic fields, in turbulent velocity fields (Moffatt 1981). 

2. General assumptions and procedure 
2.1. DeJinitions, assumptions and averaging procedures 

We consider the development of a turbulent velocity field consisting of large-scale 
and small-scale turbulence, which are assumed to be statistically independent. The 
small-scale turbulence is advected by the large-scale turbulence in a frame of 
reference moving with the large-scale turbulence. We denote the lengthscales by L 
and 1 and the r.m.s. velocity scales by U' and u', respectively. As mentioned in the 
Introduction, we assume formally that 

L % 1,  (2.1) 

u' uf 
-%-,  L l  

and that the time for the distortion t, is of order (Zlu'). 
Let U and Q be averages of the velocity and vorticity over a volume of lengthscale 

L*, where L B L* % 1. The velocity and the vorticity are then written in terms of 
their large- and small-scale components, where both are defined in terms of fixed axes 
(or axes moving with the mean flow): 

u* = u + u ,  (2.3) 

Q* = a + w .  (2.4) 

Of course, averages of u and w over a volume of scale L* must vanish from the 
definition. The characteristic integral lengthscales of U and B are O ( L ) ,  and those of 
u and o are O(1). Therefore Uand B represent the velocity and vorticity of the large- 
scale turbulence, and u and w the small-scale ones (figure 3). 

In studying the interactions between U and u we first calculate the development 
of the statistical properties of u in terms of its initial statistical description a t  time 
t = 0. The statistical properties of u are defined by averaging over a scale L* in the 
vicinity of a point X*(t) which moves a t  a velocity U(X*, t ) ,  and are calculated for 
each realization of U(x*, t )  in the locality of X*(t).  By the ergodic hypothesis, these 
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FIGURE 3. (a )  A large eddy moving with an average velocity V, relative to the mean flow; the 
streamlines - indicate the straining flow in the large eddy AU; x l ,  x2,  x3 are axes moving with 
V,; x;, x t ,  x: are fixed axes (or fixed relative to any mean flow). The centre of the eddy is at  XY. 
(6) The velocity recorded by an instrument making a rapid traverse across the large eddy (or by 
a mean flow advecting the eddy past a fixed probe). Note how the velocity is divided into large- 
and small-scale motions ( A q ,  ul). 

statistics of u can also be calculated by taking an ensemble average of many identical 
realizations of U. We shall denote these averages for given U by an overbar, so that 
a second moment of u (or of its Fourier transform) is denoted by 

&U(? 

for the ith realization. This will usually be shortened to nu. 
In  the second stage of our calculation we consider an ensemble of realizations of 

U(x*, t ) ,  and take the average over this ensemble (denoted by ( )) of any particular 
statistical property of u, which will have been calculated in the first stage for each 
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realization of U. For example, the mean second moment averaged over all 

which will be shortened to (m>. 

2.2.  Rapid distortion of the small scale by the large scale 
The condition (2 .2 )  is a sufficient condition for the nonlinear terms (u * V) o and 
(0. V) u to be neglected in the equation for the vorticity o for an incompressible 
viscous flow with no boundary layer, and we have 

a 
-o+ (Us V) 0+ (u - V) Q = (51. V ) u +  (0 * V) U+VV2W, ( 2 - 5 )  at 

where v is the kinematic viscosity of the fluid. Sometimes v is replaced by an eddy 
viscosity as a simple representation of the nonlinear effect of scales smaller than I 
(Townsend 1976). By not representing this process, we restrict the value of t for 
which the calculations are valid. 

Since the turbulence scale of u is so much less than that of U and uncorrelated with 
it, and since u is to be calculated within a distance of order L* from a reference point 
X*, moving with the velocity U(X*, t ) ,  U can be expressed as a sum of translational 
velocity V, and a uniform straining motion AU. 

Then AU and the small-scale motion can be defined in terms of axes x( = (x, y, 2 ) )  

moving with the velocity V,, viz. 

where 

and 

U* = V , + A U ( x , t ) + u ( x , t ) ,  

A U =  a - x  or A V  = aijxi, 

x = x*-X* 

d 
dt 
-X* = V, (X* , t ) .  

(2 .6a )  

(2 .6b)  

( 2 . 6 ~ )  

( 2 . 6 d )  

Note that the orientation of the vector u is not dependent on the direction of V,. The 
vorticity is also advected with the velocity V,, so 

Q,(x, t )  = eUk: at* and o = o(x, t ) ,  (2 .7 )  

where etjk is the alternating tensor. 
For incompressible large-scale motion, since V * AU = 0, 

all = 0. (2.8) 

(The summation convention is used for repeated suffices unless otherwise stated.) 

can be removed. 

small-scale vorticity (2.5), we get the governing equation for u and o: 

In the subsequent analysis a is assumed to be constant in time, but this restriction 

Substituting the forms for U* and 51" given by (2.6) and (2.7) into the equation for 

a a a 
- q + a .  x -wi = € * k l a l k ~ U y + w * a i ~ + v V 2 W i .  
at 3k kaxj  I 

( 2 .9 )  

Since this is a linear equation, a general solution can be constructed from solutions 
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for each Fourier component in u and o. Following the method of Moffatt (1967) and 
Townsend (1976), we write 

Ui(X, t)  = f q x ,  t) exp [ W )  * XI dx, 

Or(& t)  = dik, t)  exp M t )  * XI dx, 

(2.10) 

(2.11) 

(2.12) 

Substituting (2.10)-(2.12) into (2.9) and allowing the wavenumber X ( t )  to change in 
time appropriately, as well as the amplitudes G(x,  t ) ,  6 ( ~ ,  t ) ,  the advective term on the 
left-hand side of (2.9) which is linear in x is removed. Then 

s 
,. s 

X i  * 

X 
where di(x, t, = i e i j k T u k ( x ,  t ) .  

d -XI = - X j " j i ,  (2.13) 
dt 

where 

d ,  
dt 
-wi  = pii6Ji, (2.14) 

( 2 . 1 5 ~ )  

Note that for irrotational inviscid distortion 

akj = aik and therefore pii = a51. (2.15b) 

For rotational distortions pa* is a nonlinear function of a15, because x depends on 
aij. In that case depends on the history of ai,. Townsend (1980) has calculated 
&(x,t) for a number of different combinations of aU, to show how changing the 
sequence of rotational and irrotational distortions affects the change of u and o. 

The unique solutions to (2.13) and (2.14) can be expressed in terms of the values 
of x and Ci, by a deformation tensor s as 

X = K * S  (2.16) 

and 6 ( X , t )  = I .  & ( K , O ) ,  (2.17) 

where K = ~ ( 0 ) .  Here s is the inverse of the matrix S, defined as 

[ dt, dt, . . . f-' dt, a(tl) . a(&) . . . a@,) 

" 

S = 
n-0 

= exp[ [adt']. 

For a constant strain rate 
S = exp [at] 

" 1  - - E aantn,  
n-o 

where the notation (a")$j = "ab " b e . .  . "kj 

denotes a matrix operation. The vorticity deformation matrix is given by 

T = exp [ 1: P( t ' )  dt'], 

( 2 . 1 8 ~ )  

(2.18b) 

( 2 . 1 8 ~ )  

(2.19a) 
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using the same notation for the exponential as in (2.18). Note that for an irrotational, 
inviscid distortion, since a = p, 

S = T  (2.196) 
as pointed out by Durbin (1981). For rotational disturbances where S is independent 
of x and T is dependent on a and x,  these two matrices are not equal. 

Spatial spectra of the velocity and vorticity for each realization of the 
homogeneous small-scale turbulence are defined fi terms of the wavenumbers x 
defined at  time t as follows: 

@>u(x, t )  = W’, t )  .;t(x, t )  &(XI - x )  (2.20) 

and Q,(x,  t )  = 4w, t )  q x ,  t )  W - X ) ,  (2.21) 

L*.) 

where the dagger denotes the complex conjugate and the overbar an ensemble 
average for the small-scale turbulence. (This could be a spatial average over a scale 

It follows from (2.12) that these spectra are related to each other by 

(2.22) 
1 

X 
w, t )  = 7 j  4 X )  ; Q(x, t )  

and, by inversion 

where the fourth-order tensor 

Q(x,  t )  = x”k) : @ ( X ,  t ) ,  

D a b , c d ( X )  = ( 8 a b - T )  Xa x b  6cd-8ac’bd. 

(2.23) 

(2.24) 

Combination of (2.17) and (2.21) gives us the time-development of SZ in terms of 
its initial value as 

(2.25) 

where TT is the transposed matrix of T. We have used the incompressibility 
condition 

dx = dK or B ( X - X ’ )  = B ( K - K ’ ) .  (2.26) 

As for the energy-spectrum tensor, we find, using (2.22), (2.23) and (2.25), that 

D(x) { T(t) * [D(K):  @(K, t o ) ]  * T T ( t ) ) .  (2.27) 

Alternatively this can be expressed in tensor form as 

(2.28 b)  

is a transfer function which is a functional of the particular realization of the large- 
scale velocity field AU. It does not depend on the translational velocity Uo or on any 
property of the small-scale u. 

From (2.27) or (2.28) the second moments of u can be obtained by integration 
either of the initial energy-spectrum tensor Grs(x, 0) or of the initial cross-correlation 

(2.29 a )  

(2.29 6) 

U,(& 0) U , ( X + Y ,  0) : 

= k # , , r s ( x ,  t )  @ra(K,  0) dK 

= //Mtj,rs(x> t )  ur(x, 0) UAX +Y,  0) exp [iK YI dy dx. 
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I n  general this linear rapid distortion theory enables the nth moment of any 
component or components of the velocity field to be expressed schematically a t  time 
t in terms of nth moments of the velocity field at time 0 as 

{u)'"'(t) = M y t )  * {u)'n'(O), (2.30) 

whereM(*)(t) is a linear integral operator which is a function of time, and a functional 
of the rate-of-strain tensor a. 

- - 

2.3. Averaging over an ensemble of large-scale motions 
We have shown in $2.2 that  the calculation of second-order moments ISIS such as 
@&, t), 52,(x, t) or w(t), for a given.realization of the large-scale velocity field U 
in the vicinity of the moving reference point X*(t), only depends on the particular 
value of aqlax, or a within a distance L* of X* in that realization. It does not depend 
explicitly on U( X*, t) . 

Consequently in calculating the ensemble average of any statistical property of u, 
e.g. RZZ, over all realizations of U, we need only consider the ensemble of realizations 
of the rate of strain a or aq/i3xi. We could denote this ensemble by a(k),  k = 1,2 ,  . . . , 
N .  Thus for a second-order moment, this ensemble is 

1 (t) (m) = lim - C (m ). 
N+m N k = l  

(2.31) 

Inspection of (2.28), (2.29) and (2.30) shows how this ensemble average is to be 
evaluated. We note that, since C P ( K , O )  or ~ ( x , O ) u ( x + y , O )  or {u}(")(O) are all 
independent of a('), the calculation of the ensemble average over all values of a(L) 
only applies to the transfer-function tensor, i.e. Mi,,,, for second moments and 
Mcn)(t) for nth moments. Thus 

(@ij(x, t))zPixeci = ( M i j , m ( ~ , t ) )  @ r s ( ~ , O ) z f i x e d  (2.32) 

or 

- - 
or in general {u}'"'(t) = (M(")(t)) * {u} ' yO) .  (2.34) 

There are two important implications of the independence of the averaging 
process, the first being that the calculations of the ensemble average ofMtj,,, need not 
be performed for each initial nth moment distribution, so for example once 
has been calculated, (w(t)) can be calculated for many different forms of @J&, 0). 
But <@&, t)) or (ui(x)  u,(x+y))  can only be calculated by averaging overHij,., and 
eT8 for each form of GT8 as in (2.32). 

The second implication is that  the averaging operations can be carried out a t  the 
same time or a t  different times. Thus, for example, in a stationary process, the small- 
scale averaging and the large-scale averaging ( ) can both be evaluated by 
integration with respect to  time. This means that the change in, say, (w) can be 
measured by a probe that is fixed relative to the mean flow or fixed in space with the 
mean flow advecting the turbulence past it. This is the procedure in a typical 
laboratory experiment, where small scales are deliberately introduced (Tan-atichat 
et al. 1982), or where the turbulence is analysed in terms of large-scale structures and 
small-scale turbulence (e.g.  Hussain 1983). It also means that it is not necessary to  
make measurements in a frame moving with the large-scale flow U to test the 
predictions for the quantities averaged over an ensemble of realizations of U and u,  
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e.g. (u,). But it is necessary to make such ‘Lagrangian’ measurements to test the 
predictions for changes in the small-scale u-quantities which are averaged over L* or 
over an ensemble of realizations for a particular realization of the large-scale flow 
field U (e.g. the kth realization UC’)). (However, if the mean velocity U is large 
enough relative to U’ and u‘, the evolution of the small scale, e.g. w, can be 
calculated from measurements of the velocity field over a time of order L*/ U first at  
xr and then at  another point at time t later (2: + Ut) (figure 3a). With multiple arrays 
of probes i t  should be possible to define different realizations of the large-scale 
velocity field and thence test the connection between f M  and W.)  

2.4. Analysis by means of second-order moment equations and pressureevelocity 
correlation& 

Many previous analyses of the interaction of large- and small-scale motions in 
turbulence, especially the interaction of waves and small-scale turbulence (e.g. 
Finnigan & Einaudi 1981), have been based on the equations of second-order 
moments. In the notation of this paper, and ignoring third-order moments and 
dissipative effects, the equations for the ensemble mean of the second-order moments 
of the locally homogeneous small-scale turbulence are 

(2.35 a )  

where the term for the production of Reynolds stress by the Reynolds stresses 
themselves, (PRs), is 

(PRs)ij = - 

(2.35 b )  

and the term for the production sharing of Reynolds stresses in different orientations 
by the pressure gradient, (PpG), is -- . .  . ,  

and p satisfies 

( 2 . 3 5 ~ )  

(2.36) 

Note that the terms like ap& in PEs and ap/ax5 in PpG are functions of a and 
therefore the large-scale ensemble average is taken over the product =aq/ax, and 

The term PpG can be expressed by standard methods in terms of the local velocity 
uj ap/axi. 

energy spectrum tensor @jp,(x, t )  as 

(2.37) 

In general, there is insufficient information in (2.35) and (2.36) to enable (u,~,) to 
be calculated, although tensorial invariance can be used to infer the form of PPG. 
However, by using the rapid distortion analysis described in 52.2 and the procedure 
for taking ensemble averages over the large-scale straining motions, the term PPG 
involving pressure gradient-velocity correlations can be calculated. Then (w) can 
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be calculated from (2.35). In the framework of our assumptions this procedure is no 
better than using r.d.t. directly. 

I n  many approximate calculations of turbulent flows, it is generally assumed that 
effects of pressure gradients on the anisotropy of turbulence are directly proportional 
to the anisotropy of the second-order moments of the turbulence (e.g. Launder et al. 
1975; Lumley 1978), because (PpG) = 0 if the large-scale and the small-scale 
turbulence are isotropic. This is an assumption we shall be able to consider in $4, 
after computing (2.37) by r.d.t. 

3. Isotropic irrotational large-scale straining 
3.1. Arbitrary strains 

We first examine the effects on the small-scale turbulence of irrotational straining of 
constant type by the large-scale turbulence. We assume that the Reynolds number 
is large enough to ignore viscous effects. In this case a is symmetric and 

uij = aj,. (3.1) 

Let us introduce Eulerian angles 8, q4, $ which describe the directions of the three 
principal axes z',y',z' of the strain (see figure 4). These angles run through the 
following range, 

o ~ e ~ n ,  0 ~ $ < 2 n ,  0 ~ $ < 2 n .  (3.2) 

If we denote the principal values of a in the directions of the x', y', z' axes by 
al, a2, a3, respectively, then a is expressed as 

0 0  

0 0 a3 
a = A .  " 0 a2 O ) - A ,  (3.3) 

where al+a2+a, = 0, (3.4) 

1 
S " = A .  exp [ma2 tl : ) . A .  (3.6) 

cos $ cos $ - cos 8 sin $ sin $ 
A = - cos # sin $- cos 8 sin $ cos $ 

sin 9 cos e + cos 8 cos $ sin @ sin 8 sin $ 
-sin $ sin $+ cos 8 cos $ cos $ sin 8 cos q? . 

- sin 8 cos q5 cos 8 sin 8 sin $ 
(3.5) 

Combination of (2.18b, c) and (3.3) gives the changes in the wavenumber matrix S 
after n operations 

- ("""F"' 0 exP [13033 tI 

( 
0 

Note that S is also a symmetrix matrix. 

inviscid irrotational strains, we have 
Recalling the results of (2.15b) and (2.19b) for the vorticity distortion matrix Tin 

and 

p = a'( = a) 

T = S ,  

i.e. T is determined only by the straining tensor a and does not depend upon a 
particular wavenumber X ( t ) .  
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FIGURE 4. The Eulerian angles #, $, 8 between the axes (q, x2, xa) with fixed orientation and the 
axes (zi, x;, 2;) parallel to the principal axes of the rate-of-strain tensor at! of the large-scale velocity 
field U. Note that the angles 4 and $ are defined relative to Ox;, the projection of Ox; onto the 
plane  OX,^,. 

Note that by integrating both sides of (2 .25)  with respect to x ,  we obtain a simple 
relationship connecting the vorticity moments before and after a distortion : 

W(t) = S(t) * W(0) * S T ( t ) ,  (3.9) 

W,.( t )  = WJX, t )  w j ( x ,  t )  = Q,(x, t )  dx (3.10) J where 

is the vorticity moment. 
Now we proceed to consider an average effect of many strains with different 

strengths and orientations. Cases where the large-scale motions are characteristic of 
large-scale isotropic turbulence are of interest, so that the direction of strains will be 
supposed to be distributed isotropically in space. The probability density of this 
distribution of 8,$, $ is then given by 

1 
P&(8, $, @) = 8x sin 8. (3.11) 

When the distortion is small, i.e. llall t < 1, where llall is the Euclidean norm of a, 
it is not necessary to specify the probability distribution of a,, a2, a3 to obtain an 
ensemble average; only the variances of second moments may be necessary. But 
when IIa11 t 2 1, all the moments of a must be specified, which is to say the probability 
distribution. Stewart's (1951) measurements suggest that the probability distri- 
bution for the strength of large-scale strains is Gaussian, which, for incompressible 
flow, has the form 
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where a,, is the standard deviation of a,, i.e. 

(3.13) 

Also a, is the order of magnitude of the root mean square of the rate of strain of the 
large-scale motion. 

The development of the ensemble-averaged vorticity spectrum tensor (a)  is 
derived from (2.25) with T = S by first averaging over the Eulerian angles, for fixed 

(3.14) 

Since K is a function of x and 8, $, $, and the average must be carried out for fixed 
x,  this average cannot actually be done unless the initial form of i2 is specified. In  
$5.2 we shall give an example of 0 for isotropic large-scale turbulence, where we also 
average over a,, a2, a3 using (3.12). 

Similarly, the evolution of the energy-spectrum tensor (@) can be derived from 
(2.27) by first averaging over 0,  $, $ for given al, a,, a3 : 

1 
(3.15) <@kt t>,4++ = --D(x): (K2S(t) ' (D(K):  O ) )  . sT(t))8+p - 

xfixed x2 x fixed 

3.2. Ensemble-averaged vorticity moments 
Let us denote the ensemble average of the vorticity-moment tensor over O , # ,  $, for 
given a1, a 2 ,  a39 by i r  

(3.16) 

and introduce a new variable which is a convenient measure of anisotropy of the 

<Kj(t))8$* -$3ij. (3.17) 
vorticity field 

(K( t ) )*#*  
(%j('))8#+ = 

Note that <a$j(t)),#$ vanishes identically for isotropic turbulence. 
By integrating (3.14) with respect to wavenumber, using the incompressibility 

condition (2.26), we obtain the amplification of the mean-square vorticity over the 
ensemble of different orientations of distortion, for given a,, a,, a3 : 

<%(t))e++ = $exP [2aitI+exP [2a,tI+exP [2%tI) W,,(O). (3.18) 

Since the arithmetic mean is greater than the geometric mean, and since Z:-l ai = 0 
by incompressibility, 

3 

)i [ i11 I l 3  
- X exp [2a, t ]  2 n exp [2ai t] = exp 8t C at = 1.  
L1 L1 

Consequently the mean-square vorticity or the enstrophy must increase or 

<z(t)>8#$ 2 (2(o))~++. (3.19) 

The vorticity anisotropy tensor develops as 

where 
2 
5 5 exp [2a, t ]  + exp [2a2 t ]  + exp [2a3 t ]  * 

3 exp [ -al t ]  + exp [ -a2 t ]  +exp [ -a3 t ]  Fu(t) = -+- (3.21) 
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Since a3 = - (a, +a2), 
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2 3 exp [ -t’] +exp [-At’] +exp [(1 + A )  t’] 
5 5 exp [2t’] + exp [2ht’] + exp [ - 2( 1 + A )  t’] ’ 

FJt) = -+- 
where t’ = a1 t and h = a2/a,, thence 

g < FJt) < 1. (3.22) 

Therefore (3.20) implies that anisotropy is always decreased by an ensemble of 
irrotational isotropic straining flows. However, the anisotropy cannot be reduced to 
zero. From (3.22) we see that the anisotropy cannot be less than of its original 
value. 

The understanding of this surprising result may be somewhat helped by 
considering two vortex lines with different lengths I ,  and 1, on the z- and y-axes. The 
same straining is applied a t  two orthogonal orientations, i.e. 

- 1  0 
first m=(’ O ) and then E =  ( 

0 - 1  

The results are averaged leading to an increase in both 1, and 1, (because 

$.(et + ePt) x &t 

when t is large), but the ratio ll/Z2 is equal to its initial value for large time. If the 
irrotational straining term is applied at all the other orientations, still the anisotropy 
remains. This result is changed by the rotational straining considered in $4. 

From (3.18) and the probability distribution (3.12) for (al, a2, a3), we recover 
Batchelor’s result (see Monin & Yaglom 1971, 524.5) for the ensemble average of the 
moments of vorticity over all orientations and magnitudes of the large-scale 
straining, 

<i?(t)) = ( i q q ( t ) )  = (wl(t)) = exp [2ait2] (2(0)). (3.23 a )  

Thus the mean-square vorticity increases exponentially in time, in the absence of 
viscous dissipation. The development of the ensemble average of the anisotropy 
tensor [which is defined as in (3.17) but without the angle suffixes] is given by 

a&) = {g+Qexp[-5aot 3 2 2  11at,(O), (3.23 b )  

which shows that the anisotropy of vorticity decreases exponentially to its limiting 
value, which is a fixed proportion, g, of its initial anisotropy (see figure 5 ) .  Xote that 
from (3.23a, b )  and (3.17), the vorticity moments can be obtained. An example is 
worked out in $5 .  

3.3. Ensemble-averaged velocity moments 
The ensemble averages of the velocity moments over the orientation 0, $, @ of the 
straining motions can be obtained from (3.15). We define a velocity-moment tensor, 
which can be expressed in terms of @&, t) as 

(3.24) 

I n  order to calculate the evolution of the velocity field, i t  is convenient to  define a 
new wavenumber velocity-moment tensor 

(3.25) 
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FIGURE 5. The small-scale anisotropic turbulence being distorted by large-scale isotropic 
turbulence, leading to the decay of anisotropy, defined by the anisotropy tensors for the vorticity, 
for different kinds of large-scale straining : -, irrotational ; --, rotational (a: = a:) ; ---, 
rotational (Q: = @: as for isotropic large-scale straining). 

For isotropic turbulence (C,),, = $3ij(m). The main contribution to this tensor 
for any turbulent velocity field is from the eddies containing most energy (here we 
are interested in the small-scale turbulence). The principal axes of the tensor 
((&)/(&) indicate which directions in wavenumber space contribute most and 
least at high wavenumber t o  the turbulent kinetic energy per unit mass $q2(t),  
which we define as 

q2W = (u1u1) = (&Wf@* = <GL(t))O$?b. (3.26) 

For most kinds of spectra, the diagonal elements of (C,)/(6;,) can be estimated in 
terms of the integral scales of the turbulence in the i-directions; thus 

where 

In isotropic turbulence L, is $ of L,, as defined in the usual way, 

L, = = S:211(51)U1(ZLfll)d'l- 
4 

To study the evolution of the anisotropy of the turbulence, we introduce the usual 
anisotropy velocity-moment tensor (Lumley 1978) defined in terms of (l$) as 

(3.27) 
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and the wavenumber anisotropy velocity tensor, 
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(3.28) 

For example, in a turbulent shear flow where the mean velocity 
- 

U = ((dU,/ds,) z,, O , O ) ,  U: < 2 < 2, 
so b,, < 0 and bll > 0. But the largest contribution in wavenumber space to the 
energy occurs where x3 is large and x1 is small, so cQ3 > 0, and cll < 0 (Townsend 
1976, p. 83). 

By integrating (3.15) with respect to the wavenumber, we obtain the following 
expressions for q2, b, and ci, in terms of their initial values, without any other 
assumptions about the anisotropy of the initial small-scale energy-spectrum tensor 
Qi,(x, 0) (this is more general than previous rapid-distortion calculations, where it 
has been assumed that @{, is isotropic or axisymmetric) : 

q2V) = J?*(t) 92(o), (3.29) 

bij(t)  = F11(t) bij(0) +F12(t) cij(O), ( 3 . 3 0 ~ )  

cij(t) = '21(t) bij(0) +FS"zzt) Cij(0). (3.30 b)  

The general functions F,(t), F,,(t), F12(t), F2,(t) and F2,(t) are functions of a, t ,  a2 t ,  
a3t,  and their explicit forms can be derived.t 

When the strain is small, i.e. 11a11 t 4 1, the expressions for Fg and Fll,. . . , E L 2  in 
(A 1) to (A 6) can be expanded in a Taylor series expansion. Then we take an 
ensemble average over all values of al, a2, a3. If we assume that the distribution of 
these strains is isotropic, then the full ensemble-average values of q2,bt , ,c t ,  can be 
calculated from (3.29) and (3.30), where now 

(3.31) I F*(t) = t + + ; t 2 +  ..., 

Fll(t) = 1-+;t2+ ..., 
F22(t) = 1-&it2+ ..., 

F12(t) = o(a:t2), 

F21(t) = o ( a ; t 2 ) ,  

where a; = (a:) = (a:) = (a:). Note that for this small-time expansion, the form of 
the probability distribution of a1,a2,a3 is irrelevant, and also that the initial 
reduction of the anisotropy of the velocity moments b,,(t) is independent of cii(0), and 
the initial reduction of the anisotropy of the wavenumber distribution cU(t)  is 
independent of b , ( O ) .  

For large aOt, using the expressions in Appendix A, it  is found that 

F,+iexp[&;t2], F1,+ -1 6 ,  '12 F21 +i, F22 --f -I 4 '  

Thence from (3.29) and (3.30) 
q2((t) +Qexp [$a:t2]q2(0), (3.32) 

bij(t) -c+j(t) + -i[btj(O) -cij(O)I, (3.33 a) 

6b&) + 5 c 4 t )  +:[6b,(O) + 5c,(O)]. (3.33 b )  

< 1, this result can be interpreted as showing that the isotropic 

t Details are provided in Appendix A. This and the other appendices mentioned in the text are 

Since I --$I < 1 and 

held in the JFM files, and copies may be obtained from the authors or the Editor on request. 
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straining leads to a reduction in an overall measure of anisotropy which combines the 
anisotropy in the direction of the velocity components and the anisotropy in the 
directions in wavenumber space contributing to the velocity. As in the anisotropy of 
vorticity in (3.23b), there is a lower limit to this reduction. 

If we want to separate these types of anisotropy we find that when a,t B 1,  
b,,(t) + -S,(O) +&,(O) and ctj(t) +$bt,(0)-&j(O). This result should not really be 
surprising since the anisotropy of the velocity components depends on the initial 
anisotropy of the velocity components and on the anisotropy of the wavenumber 
distributions. This also supports the recent results of Lee & Reynolds (1985) that the 
development of anisotropy cannot be defined wholly in terms of the anisotropy of the 
velocity moments, as is assumed (for simplicity) in many turbulence models (e.g. 
Lumley 1978). 

4. Isotropic rotational large-scale turbulence 
4.1. Vorticity analysis 

Now we consider the effect of the large-scale strain having a significant rotational 
part a(R), when averaged over a scale L*. As we mentioned in the Introduction, a(R) 
is likely to be induced by the combined effect of many smaller-scale regions of 
intense vorticity. 

The rate-of-strain tensor can always be divided into its irrotational and rotational 
(or symmetric and antisymmetric) components as : 

(4.1) a = &) + a(%), 

where 

Let Q, = ei,k&!Jk/3xj and Q = (Q,Q,);, then a(R) can be expressed in terms of the 
magnitude of the vorticity, SZ, and a rotation matrix R, as 

-&! 0 
a ( R ) = R . ( L  0 0  o Og).R, (4.2) 

where R is given in terms of the angles 0 and @ between $2 and the (xyz)-axes 

1 cos@ sin @ 
-cos@sin@ cos@cos@ s in8  

cos 0 sin 0 sin @ - sin 8 cos Q, 

(4.3) 

As a first approximation we assume that the angles ( B , d ,  I++) and (0, @), which 
define the orientations of the irrotational and rotational large-scale motions, are 
distributed independently of each other. (This is certainly not true at  the smallest 
scales of a fully turbulent flow; it may be a better approximation at  larger 
scales.) 

As is shown in Appendix B, for a homogeneous (pseudo-) isotropic large-scale 
turbulence the ensemble averages over all orientations and magnitudes of the first- 
and second-order moments of the rate-of-strain tensor a are respectively given 

by ( a )  = 0 (4.4~) 

and (a t jEk , )  = - Q ~ s t j s , , + ( ~ ~ + ~ Q ~ ) s ~ k 6 j , + ( ~ a ~ - ~ Q ~ ) 6 , , s j k ,  (4.4b) 
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FIGURE 6. The coordinate systems used for analysing different orientations of rotational 
straining. Jz is the vector of the vorticity of the large-scale straining. 

where 52: = i(Q2) is a quarter of the mean-square vorticity of the large-scale motion. 
Note that if the large-scale turbulence is isotropic in the strict sense, we have 

The ensemble average of the vorticity-moment tensor (3.16) can be calculated for 
small strains as follows. Substitution of (2.25) into (3.16) yields 

( W q t ) )  = (QjW 

= [ (?a( t )  q b ( t ) )  52ab(K, O) dK. (4.5) 

For small strains the vorticity deformation matrix T,  which is defined by (2.19a), is 
expanded in terms o f t  as 

By substituting (4.6) into (4.5) and taking an ensemble average over a, we obtain 

( W q t ) )  = (w,.(tD 
= {1+(~a:-SZ:)t~}(W,(0))+(&%:+~2;)t2f3ij(~l(O))+ ... (4.7a) 

and 

where use has been made of (4.4a, b ) .  

( W ( t ) )  = ( FZ( t ) )  = (1 + 2 4  t2 + . . .) ( W z ( O ) ) ,  (4.7 b)  

The vorticity anisotropy tensor (3.17) is then written as 

Uij(t) = (1 -(&a;+52:) t 2 + .  . . ) U i j ( O ) .  (4.7 c) 
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To extend these calculations to strains of O( 1) requires computation of the relevant 
integrals. 

Similarly the ensemble averages of the velocity-moment tensor and anisotropy 
velocity tensor are calculated to be 

( q ( t ) )  = BJt) = { 1 - ( ~ a ~ + S Z ~ ) t 2 > ~ j ( 0 ) + ( ~ a ~ + $ n ~ ) t z 6 1 , ~ 2 ( 0 ) + .  . . ,  ( 4 . 8 ~ )  

(4.86) 

and (4.9) 

These results show that for strains of O(a; t2)  or O(Q;t2), the rotational part of the 
straining motion does not contribute to the amplification of the mean-square 
vorticity (enstrophy) or the mean-square velocity, but that it does help to reduce the 
anisotropy by the same order as the irrotational straining motion (see figure 5 and 
the next section for an example). The explanation for (4.7)-(4.9) is that, since the 
rotational part gives a rigid rotation as the leading-order effect, the lengths of the 
vortex lines and magnitudes of the wavenumbers are not distorted. However this 
rotation tends to reduce the anisotropy in o and u. 

The analysis has not yet been extended to the case where a: t2  or 52; t 2  are O( l ) ,  but 
we expect that, as in the simple example discussed in $3.3, the effect of rotation 
would ensure that isotropic straining could lead to approximately isotropic small- 
scale turbulence. Note that at larger times the effect of the initial distribution of 
energy in wavenumber space becomes more important. Further research to examine 
this conjecture is necessary. 

In estimating the energy transfer between turbulence with scales larger than k-' 
and scales smaller than E l ,  Townsend (1976, p. 99) only considered the symmetric 
part of a. These results give some support to that assumption. 

q*(t) = &(t)  = (1 + $ % ; t 2 + .  . *}&(O)  

b,j(t) = { 1 - ($a: + SZ;) t2 + . . .) bjj(0). 

4.2. Calculations using pressure and the momentum equation 
An alternative method for calculating the change in the energy of small-scale 
turbulence under the action of large-scale strainings is to use the approach outlined 
in $2.4. The expressions (2.356) and (2.37) do not give (PRs) and (PPG) to O(t2)  
because ui is a function of a q / a x k .  By expanding Gij(x, t )  and in terms oft, taking 
an ensemble average of (2.356) and (2.37) over all orientations and magnitudes of a 
and integrating with respect to the wavenumber, we obtain 

(pRS)ij = t { ( a i - % ; ) $ j ( o )  + +!SZt) (sij&(o)-2qj(o))}, ( 4 . 1 0 ~ )  

and (PPG)ij = - t ( ~ ~ + ~ n ; ) ( ~ , ( o ) - ~ j ( o ) ) .  (4.10b) 

Now can be computed to O(tz) by integrating these expressions (see (2.35a)). 
These results are consistent with (4.8a). 

We see that both the Reynolds-stress production terms (PRs) and the pressure 
terms (P,,) are functions of the distribution of energy in wavenumber space as 
defined by the complementary tensor C,. This effect is omitted in all current models 
of turbulence for the second moments of the velocity. 

Consider the model of Launder et al. (1975) applied to this rather pathological 
problem (which is certainly outside the range of flows for which the model was 
derived). In that model, in the absence of a mean velocity gradient, 

(4.11) 
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where E is the rate of dissipation of turbulent energy per unit mass, Ur is the total 
turbulent velocity, and c1 is a constant. For this problem of energetic large-scale 
isotropic turbulence and small-scale anisotropic turbulence, E - U3/L,  and UF Uf - 
3U2. Therefore, since all the anisotropy is at  small scale, (4.11) implies 

(4.12) 

Substituting this expression into ( 2 . 3 5 ~ )  we can see that this model implies that the 
rate of return to isotropy is given by 

b,,(t) z bij(0) (1 - t F). (4.13) 

Contrast this result for (4.13) with the exact result (for small time) in (4.9), which 
shows that the change in b, is of order (u2/L2) t2bi5(0). So the change predicted by this 
theory is initially slower than the estimate derived from the usual second-order 
models, or from spectral models which have a relaxation process, such as EDQNM 
(Bertoglio 1986). 

Compare also the important difference between the exact expression for Ppc at 
small times and the modelled term in (4.12). Not only is there a different dependence 
on time, but there is a difference in the dependence on the distribution of energy 
in wavenumber space of the small-scale turbulence. In (4.10b) there is such a 
dependence, but there is not in (4.12). A t  first sight this looks like an important 
difference, but in fact it may not be so important because in all models the effects 
of qj on the Reynolds-stress terms are also overlooked. As we have seen, to O(t) ,  
the contributions by C, in these two terms exactly cancel! That is why b,(t) is 
independent of cij to O(t2). 

5. Examples of large- and small-scale interactions 
5.1. Two-dimensional isotropic small-scale turbulence disturbed by isotropic large- 

scale turbulence 
Consider a situation where the small-scale turbulence is initially two-dimensional 
but - isotropic in - the (Oz,z,)-plane, so that = 3 = 0 and 2 $; 0, while 2 = 
ui( = & z )  and ui = 0. Then the initial vorticity and velocity anisotropy tensors 
have diagonal components : 

vorticity : a,, = a22 = -;, a33 = 1-g = 8, 
velocity : b 1 1 - 2 2 - 2  - b  -1-1-1 3 - 6 7  b,, = -Q. 

(5 .1~)  

(5.1 b )  

The components of the complementary velocity-moment tensor C, defined by 
(3.25) for two-dimensional turbulence are such that Cll = CZz, and C33 = 0. So the 
initial wavenumber anisotropy tensor cij has diagonal components : 

(5.1 c) 

We first consider the effects of random irrotational straining. From the solution 
(3.23 6 )  it follows that the vorticity anisotropy tensor decreases exponentially to 
f of its initial value: 

cl, = CZ2 = 8, 1 Cg3 = -5. 

(5.2) a,, = a22 +Z x ( -1) = -8, a +.Z x 2 = 4 
5 3 33 5 3 15' 
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FIQURE 7. An example of small-scale anisotropic turbulence being distorted by large-scale 
- isotro*ic_turbulence, to show the decrease in anisotropy for a particular example where initially 
u: = u;, u: = 0. (a) The vorticity anisotropy tensor ut,. (a) The anisotropy velocity-moment tensor 
b,$. (Only the initial and final forms are given for irrotational strains; only the initial form for 
rotational strains.) -, irrotational ; -- , rotational ( G ? ~ = $ z ~ ) .  Note tha t  the wavenumber 
anisotropy velocity-moment tensor ct, has the same form as bsf (at least with irrotational straining). 

Thence from (3.17) and ( 3 . 2 3 ~ )  the asymptotic form of is 

From the solution (4 .8a) ,  the initial changes in the components of the velocity- 
moment tensor are 

- - - 
ut(t) = z(t) = ( ~ + & : P ) $ ( O ) ,  u:(t) = $a:t2u@). (5.4) 

Asymptotically, as a,t % 1, 3 and 3 increase exponentially and their anisotropy 
tensors take the limiting form (from (3.32) and (3 .33) ) :  

b 11 - b  - 22 +-II+LL=L 6 6  1 2 6  24 ,  b 3 3 +  -'(-L)+L(-L) 6 3 1 2 3  =-l 12 9 (5.5a) 

and cll = c 2 2 + L 1 - L L  2 6  4 6  = L 241 % 3 + $ ( - ; ) - i ( - $ )  =-A- (5.5b) 
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1 2 
4% 

FIGIJRE 8. The change in a delta-function spectrum of small-scale turbulence undergoing random 
irrotational straining by large-scale turbulence. (Rotational straining does not affect E(K)  over 
short times.) (a )  The fixed magnitudes of principal strains, but  random orientations, a, > a2 > a3, 
where a, > 0;  ( b )  Gaussian distribution of strains with variance at. 

Thus the effect of isotropic irrotational straining increases the energy and vorticity 
of the small-scale turbulence, and reduces its anisotropy but cannot completely 
eliminate it. Note that the asymptotic forms for the components are approximately 
valid even when a,t 2. 
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We now consider the effect of random rotational strainings using the results of $4. 

(5 .6)  

The solution (4.7 c )  gives the change in the anisotropy tensor : 

a,#) = [1 -(&la: +a:) tzl a&)), 

showing that the rate of reduction of anisotropy of vorticity is faster. 
Likewise the rate of change in the anisotropy of the velocity tensor is increased : 

(5.7) 

These differences are shown on figure 7. Note here that the change in the mean- 
square vorticity - and energy q2 is not affected by the rotational straining. 

- 
u$) = Z(t) = [l +(&z:-g2:)tz]q(o),\ 

G(t) = ($$+;a;) t 2 3 ( O ) .  j 

5.2. The c h w e  in the spectrum 
When small-scale turbulence is distorted by large-scale turbulence, its spectrum is 
also changed as well as its energy and its anisotropy. This aspect of the interaction 
has been of special interest in the experimental studies e.g. by Kellogg & Corrsin 
(1980) and others. 

We consider the idealized problem of isotropic small-scale turbulence whose initial 
spectrum is a delta function being distorted by random irrotational isotropic large- 
scale straining. The mathematical problem is summarized by (3.15). Since the initial 
spectrum is isotropic and the straining is isotropic, the spectrum remains isotropic, 
so 

where, a t  t = 0, E ( K , O )  = &:&(K-K0) .  (5 .8b)  

The details of the calculation are omitted. I n  the first stage we consider how 
E(x , t )  changes under the action of random orientation of straining by fixed 
amplitude of straining (a1 > a2 > a3 and a, > 0, a3 < 0) ; (figure 8a). The result is that 
E ( x , t )  continues to be singular at the wavenumber x = ~ , e x p  [-a,t]. But the 
spectrum spreads towards both low and high wavenumbers. At a given value of time 
the spectrum lies between the limits K~ exp [ - 01, t] and K~ exp [ - a3 t]. The exact form 
of E(x ,  t )  is given by elliptic functions : 

\0 otherwise, (5 .9a)  
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where X ( r )  and Y ( r )  are the complete elliptic functions of the first and second kinds, 

and (5.9c) 

Here we have assumed a, > u2 > a3 without loss of generality. Note that if az is 
positive (a straining by ‘squashing’), then the maximum moves to low wavenumbers 
because more fluid elements are lengthened than compressed. If u2 is negative (or a 
straining by ‘elongation ’) the maximum moves to high wavenumbers because more 
fluid elements are compressed. 

When we consider a Gaussian distribution of straining motion, the peak in the 
spectrum is finite and decreases with time. In fact for small initial strains uo t + 1, the 
maximum of E ( K ~ ,  t )  decreases rapidly as 

~ 

(5.10) 

and the width of the peak increases in proportion to K~ a. t .  A computed spectrum is 
shown in figure 8(b) .  At larger times the centre of gravity of the spectrum moves 
towards high wavenumbers since the high wavenumbers are preferentially amplified 
by the random straining motions. 

5.3.  Interaction between isotropic small-scale turbulence and non-isotropic large-scale 
turbulence 

We now consider small-scale isotropic turbulence undergoing straining by a strain 
field a, which is anisotropic. It is possible to calculate the initial development of the 
velocity-moment tensor $,(t) (to O(at t2) )  by integrating (2.27) with respect to x after 
the vorticity deformation tensor T(t) and the wavenumber x( t )  are expanded in terms 
of small time t. (The details are given in Appendices C and D.) 

The general result for the velocity-moment tensor when the large-scale straining 
is anisotropic and rotational is 

- 5( a2)ji - 12(a,, a,,) + 2(a,, a,,)] 

The energy is 

M t )  = 2 JW, 0) d 4 1  +&t2(<a”,,+ (@,b@.,b))I,  (5.11 b )  s 
and the anisotropy tensor is 

t 2  

315 bij(t) = -L10((a2),a+ ( a a b ~ , b ) ) S l j - 3 ( 5 < a 2 ) i j + 5 ( a 2 ) j i +  lz(a,la,I)--2(a,,olj,))]. 

(5 .11~)  

As an example, consider straining motions that are axisymmetric about the axis 
hi = Si,. This is of importance near interfaces where small-scale turbulence is 
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distorted by large-scale eddies impinging on the interface (Hunt 1984). In  this case 
we have 

+ 4(ai1) + 22(a13 a31)) 8, + (40<a:,) - 2 5 ( ~ : ~ )  - 26(a:,)  

+ w a i l > -  10<a13a31))A6Ajl}, ( 5 . 1 2 ~ )  

4kt) = 2 b ( k ,  O)dW +&t2(8(a:,)+ (4,) +2@;,)+2<a&) +4<al3a3,))], (5.12b) 

b&) = -( -40 (61~ , )+25(a i3 )+26(a~ , ) -  16(ag1)+ 10(a13a31))(8tj-3A,A,).  
t 2  

315 
( 5 . 1 2 ~ )  

Consider an interface of x = 0, where U, -+ 0. Since the characteristic length in the 
x3 direction is smaller than those in the x1 and x2 directions near such an interface, 

(5.13) 

( 5 . 1 4 ~ )  
- 

while = g( 1 -%(a:,) P). (5.14 b)  

In  other words the components of small-scale turbulence parallel to the surface are 
preferentially amplified compared to the normal component as observed in the 
experiments of Thomas & Hancock (1977) and the numerical simulations of Biringen 
& Reynolds (1981).  See also the discussion by Hunt (1984). 

q"t) 

6. Interaction of large-scale and small-scale turbulence in the presence of a 
mean strain 

We now consider the changes in the vorticity and velocity of small-scale 
turbulence when it is being distorted by large-scale irrotational mean straining 
motions and by large-scale random straining motions. We want to explore how these 
two kinds of straining motions interact. 

The same theory can be used as defined in 52.2, the only change being that now 
the large-scale straining motion AU has a mean component A - x and a fluctuating 
component a - x ,  so AW = A* - x ,  where 

A * = A + a .  ( 6 . 1 ~ )  

We choose a coordinate system in which A is diagonalized, so that 

4j = A'i'S,. ( 6 . l b )  

How does this correspond to an experimental flow Z If a two-scale turbulent flow 
is initially generated and then distorted by a mean straining motion, the vorticity of 
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the large-scale component is distorted as well as that  of the small-scale. So the 
rotational component of a is a function of A and changes with time. I n  fact a can only 
be a stationary and isotropic random straining motion if i t  is continuously generated 
by some internal force field. So the first calculation where a and A coexist is rather 
idealistic. I n  the second calculation we consider the small-scale turbulence to be first 
distorted by the mean motion and then by the large-scale fluctuation, e.g. by a small 
grid followed by a contraction followed by a large grid and a uniform flow. 

The deformation matrix S and the vorticity deformation matrix T defined by 
( 2 . 1 8 ~ ~ )  and ( 2 . 1 9 ~ )  are expanded as power of time t ,  the initial wavenumber K and 
the strain tensor A*. It is found that 

where 

and 

1 1 
2 !  3 !  

T = /+ T‘l’t + - T(”t2 + - T(3)t3 + . . , , ( 6 . 2 ~ )  

( 6 . 2 ~ )  

where 
Appendix E. 

spectrum Q,,(K, 0) : 

are sums of products of nth powers of A* and polynomials in K, given in 

The vorticity-moment tensor can then be expressed in terms of the initial vorticity 

(Tq) = w,.(t) = < T i p ( K ,  4 ?*(K, t )> Q P * k  0 )  dK. (6.3) I 
If a is isotropic and Gaussian with zero mean, it implies that 

(a) = 0, (aaa) = 0. (6.4) 

and thence (see Appendix E) that the straining tensor applied force is expressed in 
terms of the mean-square vorticity 52; and the mean square of the deformation of the 
large-scale turbulence (4.4b). Then ( q P T q )  is expressed in terms of 52:, ui and 
products of K, and thence Fj(t )  is derived, for a general mean straining motion, in 
terms of the principal strains of the mean motion, A(i )  : 

Fj(t)  = Wj(0) + (A(i’ +A”’) W , ( O )  t+$[(A(i’ +A‘i’)2W,,(O) 

+ (ya: - 2 9 3  W, , (O)  + ($a: + $2;) 8, W,,(O)] t 2  

+ ~ I ( A ( s ’ + A ( ~ ) ) ~ w , ~ ( o ) +  (ga:-55523(~(9+~q ~ ~ ( 0 )  

+ (&a:+ a;) (2A‘@’ +A($’ + A‘,’) sij W,,(O)] t 3 .  (6.5) 

As an example we consider a two-dimensional mean straining motion 

- A  0 0 
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W,(O) = @isij.  

430 

where A > 0, e.g. a two-dimensional stagnation flow. The initial stsate of the small- 
scale turbulence is isotropic, so 

It follows from (6.5) that 

(6-7) 

Wll(t) = wi[e-2At+2ait2- ($%4-3Qi)At3+O(t4)], (6.8a) 

W2&) = w;[l+2a;t2+O(t4)], (6.8b) 

W33(t) = wi[e2At+2a%t2+ (+i-$2i)At3+O(t4)], ( 6 . 8 ~ )  

and all the other components are identically zero. 
The first term reflects the mean vorticity compressionIstretching and the second 

is caused by the random straining. The third is caused by the combined effects of the 
mean deformation (A)  and the large-scale random straining (a). Note that the effect 
of random irrotational distortions is to amplify the anisotropy induced by the mean 
straining. The explanation is that the vortex lines stretched in the x, direction by the 
mean motion experience a net increase in stretching when they experience a random 
distortion, while the vortex lines in the x1 direction experience a net compression. To 
understand this mathematically consider the random motion to be rectilinear with 
the mean straining efAt ,  i.e. to be either eat or e-at, so that the lengths I ,  and 1, 
are 

1, = +(eat + ePat) eAt - eAt +ka2t2 + lJa2t3 + . . . , 
2 -1 - 2(e at + ePat) ePAt - ePAt + g2t2 - l$4a2t3 + . . . . 

The term in t3 gives the interaction effect. 
The effect of rotational motion is clearly to reduce the anisotropy by rotating the 

highly stretched vortex lines I ,  to give a component in the x1 direction - depicted in 
figure 2. 

It is possible that these ideas are applicable to turbulent shear flows under the 
influence of external turbulence or sound fields. The main distortion in a shear flow 
is an irrotational strain, and some of the effects of external turbulence or acoustic 
forcing are irrotational. Perhaps the well-known synergistic effects in this interaction 
(which have never been adequately analysed) are partly explored by this calculation. 

Our result agrees in general with the result established by Bertoglio (1986) that the 
transfer of energy between wavenumbers is qualitatively different in straining flows. 
He found that, as the velocity-spectrum tensor is changed, so is the tensor for the 
transfer of energy. 

In  our second analysis of this interaction we consider the sequential application of 
a mean strain A and then a random strain a. The former is the usual r.d.t. calculation 
and the latter is the same as in $4.1. So we can calculate the changes in the velocity 
field as well as the vorticity field: 

a = O  for O < t < t , ,  
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The changes in the vorticity moments are given by: 
for mean distortion 0 < t < t ,  

Wll(t) = wie-2At, 

W22(t) = (-4, 
K3(t) = wie2At, 

K,(t) = 303 1 +$(At)2 + . . .) ; 
for turbulence interaction t 3 t ,  

(6.9a) 

(6.9b) 

( 6 . 9 ~ )  

(6.9d) 

(6.lOa) 

Wz2(t) = wi[l+27:+. . .I, (6.10 b) 

( 6 . 1 0 ~ )  

& ~ ( t )  = 3w;[l + fTil + 27: + 0(7i1, T : ) ] ,  (6.10d) 

where 7, = a,(t-t,), 7A1 = A t , .  (6.11) 

The anisotropy tensor of vorticity for t 2 t ,  is given by 

a,,(t) =-- 27A1-gqA1- -+d 7A17: , 
3 " (! 2:a) 1 (6.12a) 

(6 .12~)  

The changes in the velocity moments are given in terms of the initial isotropic 
small-scale turbulence L&(O) = m(0) = ui 6,, : 
for mean distortion 0 < t < t ,  

B,,(t) = U;(l+;At+g(At)2+. ..), 

BZ2(t) = ui(1 +E(At)2+. . .), 
B33(t) = ui( 1 -$it ++g(At)2 + . . .), 
B,,(t) = 3u;( 1 +f&'lt)2 + . . .) ; 

for turbulence interaction t 2 t, 

(6 .13a)  

(6.13 b) 

(6.13 c) 

(6.13d) 

B,,(t) = u:{l+3;,+$7:+...}, (6.14b) 

B33(t) =u; l-$-A1+gT;l+- "[ 1 +  (;o -+- f;) 7A1 ] 7:+ . . .  } , i 5 
(6.14c) 



Interaction between different scales of turbulence 

The anisotropy tensor of velocity for t 2 t ,  is given by 

44 1 

(6.1 5 a)  

(6.15b) 

( 6 . 1 5 ~ )  

In this case the isotropic large-scale straining is only applied after the turbulence 
has been distorted. As in the result of 54.1, the anisotropy decreases in proportion to 
7f (here 7: is measured from the time when the interaction with the large scale 
begins). Both irrotational and rotational strains act to reduce the anisotropy tensor 
aij. But only if 52; > %a: is the absolute difference in the mean-square vorticity in the 
x1 and z3 directions reduced (i.e. W,,-W,,). (Since both W,, and W,, increase on 
account of the term 27:, even if W,, - W,, increases, lalll and IaJ decrease !) In reality 
the term 27: is compensated by the loss of energy by dissipation, so the interesting 
term to look for in measurements or computations is W,,- Wll. 

On the other hand, the initial difference between the mean square of the velocity 
components is relatively smaller and is reduced whatever the relative magnitude of 
52: and a:. It is also reduced faster. 

7. Concluding remarks 
In the Introduction we raised some general questions about the interactions 

between large- and small-scale turbulence. Our analysis enables us to give the 
following answers. 

( i )  Energy tran8fer 

These interactions occur through the straining and rotation of the vorticity of the 
small-scale by the large-scale turbulence. The energy of the small scale initially 
increases purely as a result of the irrotational straining motions. The rotational 
distortion does not affect the energy initially. At  later times the distortions by these 
two processes interact. It is likely then that the rotational distortion will reduce the 
energy transfer, though this has not been proved. 

We note that the initial rate of increase of kinetic energy of the small scale is 
proportional to the square of time and that the timescale for this increase is a;'. (As 
with turbulent flows in mean strains, it is not clear whether this rate of increase will 
drop to zero at  later times.) 

We also note that the initial rate of increase of mean kinetic energy q2( t )  is 5 of the 
rate of increase of the mean-square vorticity z. Under the action of large-scale 
random irrotational straining, q2( t )  increases at  an exponential rate that is a quarter 
of the exponential increase of 2. 

(ii) Anisotropy 

(a) When the small scale is anisotropic and the large scale is isotropic, the interaction 
leads to the small-scale anisotropy (measured by the tensor bt j )  decreasing as 

dbij 
- dt K - tbi j  (straining)l. 
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This rate of reduction is proportional to  the local value of anisotropy ; i t  is about 
equally reduced by irrotational and rotational straining ; and initially it is 
independent, of the anisotropy in wavenumber space of the small-scale energy. It is 
equal to the rate of reduction of the anisotropy of the vorticity moment,s. But over 
large times we have found that the irrotational straining cannot lead to an isotropic 
velocity or vorticity field (though the former is more isotropic than the latter). The 
distribution of small-scale energy in wavenumber space, defined by a new tensor cii, 
becomes equally as important as the velocity-moment anisotropy tensor bij .  In fact, 
if initially, the velocity tensor is isotropic but the wavenumber distribution is 
anisotropic (i.e. bii = 0 and cii + O ) ,  then the small-scale turbulence becomes 
anisotropic a t  later times. We have shown analytically (albeit for a special case) why 
the rate of reduction of the anisotropy tensor cannot be a unique function of the 
tensor, in a given type of turbulence. 

( 6 )  If the large scale is anisotropic, the interaction leads to the small scales 
becoming anisotropic. The rate of change of the anisotropy of the small scale is 

db 
-A cc - t (anisotropic strain rate)*. 
dt 

Where the anisotropic strain rate is large (e.g. near an interface), this can lead to 
large changes in the small-scale anisotropy. (The anisotropy of higher-order statistics 
of the small scales may also be significantly affected, as certainly occurs in turbulent 
thermal convection - Hunt, Kaimal & Gaynor 1988.) 

(iii) Spectra 

The wavenumber spectrum of the small-scale turbulence is broadened by random 
straining. This is a relatively fast process; and the peak Em,, a t  k = k,, of the small- 
scale spectrum initially decreases as 

The width of the spectrum increases in proportion to k,a,t, or U’t/Lolo if I, and Lo 
are the scales of the small- and large-scale turbulence. 

These results show that the rate of deformation of the spectrum of the small-scale 
turbulence is greater for the smaller scales. At large times the result (5.9) indicates 
that the peak of E ( x , t )  moves to a higher or lower wavenumber depending on 
whether the large scale motion is elongating or squashing. 

(iv) The effects of mean distortion on the interaction between large- and small-scale 
turbulence 

We have shown that in an irrotational mean straining motion, the large-scale eddies 
induce additional irrotational straining, in such a way as to amplify the anisotropy 
of small scales induced by the mean strain. Although the rotational strains reduce 
this anisotropy, their effect is weaker than that of the irrotational strains if the 
straining is isotropic. This suggests that the nature of the large-scale turbulence or 
straining may have a significant effect on the smaller scales in straining flows. The 
result also indicates a reason why in some distorting turbulent flows, the nonlinear 
processes are not particularly effective in limiting the distortion by the mean 
flow. 

Following a period of mean strain when the turbulence is distorted, isotropic large- 
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scale eddies induce the smaller-scale eddies to return to  isotropy by both irrotational 
and rotational straining. 

(v) Modelling 

(a) We have shown that interaction between large and small scales of turbulence is 
initially proportional to the time of interaction, e.g. 

db.. 
2 cc -tbii (straining)2. 
dt 

As explained in $4.2, in current second-order one-point models and in more complex 
spectral models containing some relaxation process, this result would be 

b, - db, - b, (strain rate). 
dt (time scale) 

Thus our computation shows that an interaction between scales begins more slowly 
than predicted by the simple relaxation models. (By analogy, in turbulent diffusion 
the rate of increase of variance of particle displacements du2/dt is initially pro- 
portional to t, and only after an integral scale is it proportional to TL; thus eddy 
diffusion models, in which it is assumed that du2/dt is proportional to TL for all 1,  can 
only be useful when t 2 TL. I n  the same way relaxation models are only appropriate 
for changes over timescales greater than TL, (J. Herring, private communication.) 

(b )  In  most models of one-point second-order moments, the pressure-strain 
correlations 

(PP& = - p  -+d axj ax, ("" 
are assumed to be proportional to the anisotropy tensor of the velocity moments 
btj. We have shown that initially they should be proportional to time and to the 
difference between the usual anisotropy velocity-moment tensor bii and the 
wavenumber anisotropy tensor cij. The latter point is consistent with the heuristic 
calculations of this expression by Weinstock & Burk (1985) who find that (PpG/btf) 
is sensitive to the anisotropy of turbulence. They appear not to have considered the 
possibility of the sensitivity to the wavenumber anisotropy which is related to c,,. 

I n  the models for the production of turbulence by Reynolds stress, 

(PRs)ij=- ( u,u, '+u.u ;x; +Z) - , 
these effects of time dependence and wavenumber anisotropy are also omitted. This 
means that in some calculations these models must overpredict the return to isotropy 
because of the neglect of the ' t '  dependence. But the neglect of cii does not matter 
initially because the cij terms in PpG and PRs cancel out. At larger times, however, 
cij probably does play a part and that needs to be considered. 

(vi) Further reservations 

There are several important mechanisms for transfer between wavenumbers that 
have not been considered in these calculations. 

(a) The interaction between wavenumbers within the range of wavenumbers in 
the small-scale turbulence has a large effect on the tendency towards isotropy of this 
component of turbulence, if d / l >  U / L ,  as in a typical continuous spectrum, a t  very 
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high Reynolds number. The analysis here indicates the additional effccts by large- 
scale straining. 

( b )  The transfer of energy between wavenumbers can also occur by a pure 
advection process. In two-dimensional turbulence there is no vortex stretching, but 
there is a distortion of the wavenumber of the small-scale turbulencc by the large- 
scale turbulence. This process is modelled in the theory presented here. In two- 
dimensional turbulence high wavenumbers are compressed but no extra vorticity is 
generated, and so there is no extra energy. Consequently the spectrum of the small- 
scale turbulence is distorted towards low wavenumbers. 

(c) We have not considered dissipative processes and the cascade of energy 
between wavenumbers in the small-scale turbulence. This will be affected by large- 
scale straining. 

Finally we hope that these model calculations will stimulate some further direct 
computations and further experiments on the interactions between large-scale and 
small-scale turbulent flows with a distinct separation of scales. 

S. K. would like to express his cordial gratitude to Yamada Science Foundation 
who supported his visit to Cambridge in 1982-1983. J. C. R. H. would like to express 
this appreciation to NCAR for his stay there in 1983 when he was working on this 
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Copics of Appendices A-E referred to in the text may be obtained on request to 
the authors or the Editor. 
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